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Abstract: Recently, the interest in using nucleic acids for therapeutic applications has been increas-
ing. DNA molecules can be manipulated to express a gene of interest for gene therapy applications 
or vaccine development. Plasmid DNA can be developed to treat different diseases, such as infec-
tions and cancer. In most cancers, the immune system is limited or suppressed, allowing cancer cells 
to grow. DNA vaccination has demonstrated its capacity to stimulate the immune system to fight 
against cancer cells. Furthermore, plasmids for cancer gene therapy can direct the expression of 
proteins with different functions, such as enzymes, toxins, and cytotoxic or proapoptotic proteins, 
to directly kill cancer cells. The progress and promising results reported in animal models in recent 
years have led to interesting clinical results. These DNA strategies are expected to be approved for 
cancer treatment in the near future. This review discusses the main strategies, challenges, and future 
perspectives of using plasmid DNA for cancer treatment. 
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1. Introduction
According to the World Health Organization (WHO), cancer is a leading cause of 

death worldwide, with nearly 10 million deaths in 2020 [1]. Different conventional meth-
ods and treatments are available for cancer, such as chemotherapy, radiotherapy, and sur-
gical resection. However, if some cancer cells escape these treatments, they can lead to 
more aggressive tumors [2]; thus, these methods are insufficient. Recently, new therapies 
have been added to the arsenal to fight cancer with promising results, such as targeted 
therapy, stem cell therapy, nanoparticles, and active or passive immunotherapy [3,4]. 

An alternative that has shown promising results is the use of deoxyribonucleic acid 
(DNA) molecules for gene therapy [5]. Over time, the use of DNA for vaccination against 
cancer began with the characterization of the first tumor-specific antigen [6]. From there, 
different strategies have been developed to use this technology in cancer treatment. 

The most used DNA-based vectors for cancer gene therapy and DNA vaccination are 
plasmids, small circular molecules originally obtained from bacteria. Furthermore plas-
mids, other non-plasmid DNA-based platforms for gene delivery have recently been re-
ported. Some examples of this type of platform are minicircle DNA (the unnecessary plas-
mid backbone is removed by recombination) [7], MIDGE DNA (minimalistic expression 
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constructs) [8], Doggybone DNA (linear, covalently closed, double-stranded molecules) 
[9], or linear DNA amplicons produced by polymerase chain reaction (PCR) [10]. 

Plasmid DNA for gene therapy and DNA vaccination offer several advantages over 
other nucleic acid platforms, such as being easy to design and manufacture, having a low 
production cost, and having a high stability for transportation and long-term storage [11]. 

In this manuscript, we discuss the basics of plasmid design, the use of tumor-specific 
promoters for gene therapy and tumor-specific antigens for DNA vaccination, the use of 
fusion proteins to potentiate the antigen immunogenicity, the combination of DNA vac-
cines with immune checkpoint blockade (ICB), the main in vivo delivery methods, and 
the principal challenges and future perspectives derived from clinical trials. 

2. Plasmid Design for Cancer Therapy 
Plasmids used for cancer gene therapy or DNA vaccination must contain at least one 

expression cassette that directs the expression of a protein that will induce the therapeutic 
effect. After DNA uptake by the cell, it needs to reach the nucleus, where the gene will 
direct the therapeutic protein expression in the same way the cell produces its own pro-
teins (Figure 1). 

 
Figure 1. In vivo expression of cancer therapeutic proteins. Once a plasmid enters the cell, it must 
reach the nucleus, where it will start its transcription by the cell’s machinery. Later, the synthesized 
messenger RNA (mRNA) will be transported to the cytosol to be decoded by ribosomes into pro-
teins. Figure created in Biorender.com. 

For therapy to be effective, the correct design and optimization of the plasmid are 
crucial (Figure 2). For example, if more than one gene of interest needs to be expressed 
using a single plasmid, we can even express them independently (each gene with its own 
promoter), in a multicistronic system (two or more genes under the control of the same 
promoter), or as a fusion protein (a linker sequence between both sequences may be 
added). For the multicistronic system, an internal ribosome entry site (IRES) or a virus-
derived T2A sequence must be placed between the different genes [12-15]. 
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Figure 2. Plasmid design for expression of therapeutic proteins. Schematic representation of the 
main elements to include in a basic plasmid backbone for cancer therapy and plasmids for expres-
sion of multiple proteins. ISS: immunostimulatory sequences; IRES: internal ribosome entry site. 
Figure created in Biorender.com. 

Codon optimization of the gene of interest is highly important, since the richness of 
guanines and cytosines increases messenger RNA (mRNA) levels [16,17]. Furthermore, 
the DNA molecule per se may stimulate the immune system through its unmethylated 
cytosine–phosphate–guanine (CpG) motifs and double-stranded structure [18]. CpG se-
quences in DNA vaccines have been shown to increase immunogenicity, acting as im-
munostimulatory sequences (ISS) through recognition by the Toll-like receptor 9 (TLR9) 
present in antigen-presenting cells (APCs) [19]; however, they may decrease gene expres-
sion [20]. 

Depending on the strategy intended for the plasmid, the gene of interest may encode 
a therapeutic protein to kill cancer cells directly, for example, a proapoptotic protein [21], 
an enzyme that activates a prodrug [22,23], a cytotoxic peptide [24], or a bacterial toxin 
[25,26]. Plasmids encoding specific small interfering RNA (siRNA) molecules may be used 
for cancer gene therapy [27,28] (Figure 3). In this case, a tumor-specific promoter can direct 
the transgene expression in cancer cells [29]. 
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Figure 3. Different strategies using plasmids for therapeutic purposes. Schematic representation of 
three different strategies involving in vivo expression of therapeutic proteins. Figure created in Bi-
orender.com. 

Another option is that the gene of interest encodes an antigen or a cytokine to stimu-
late immune cells (mainly lymphocytes or APCs) [30,31] to destroy cancer cells. Since a 
high transgene expression is required for immune stimulation, strong promoters, such as 
the cytomegalovirus (CMV) promoter, are more suitable for this strategy. Furthermore, 
expression of the therapeutic protein may be performed by any cell that captures the plas-
mid. In addition, APC-targeted expression may be achieved using specific promoters [32]. 

A novel strategy involves using plasmids that encode monoclonal antibodies to block 
different signaling cascades, such as immune checkpoints or other molecules expressed 
on the cell surface or secreted in the tumor microenvironment [33]. 

3. Tumor-Specific Promoters for Gene Therapy 
As we can find cell- and tissue-specific promoters that regulate the expressions of 

different genes in normal cells, some promoters also allow for the expression of genes that 
favor the proliferation of cancer cells. Scientists have taken advantage of the nature of 
these to allow for the expression of therapeutic genes only in cancer cells. There are pro-
moters functional in cancers of different origin (cancer-specific promoters) but not active 
in normal cells, and there are specific promoters that are active only in a limited type of 
cancer cells (tumor-specific promoters) [29]. Herein, we mention some of the most widely 
used cancer-specific promoters, whose antitumoral effects have been analyzed in vivo us-
ing non-viral gene therapy. 

The promoter of human telomerase reverse transcriptase (hTERT) has null activity in 
most somatic cells due to the absence of its methylation, which allows for its binding to 
the repressor. hTERT is a type of promoter active via methylation in different types of 
tumor tissues, which allows for the high expression of telomerase, an enzyme responsible 
for increasing telomeres in the proliferation of cancer cells [34,35]. The therapeutic use of 
this promoter in cancer therapy has been analyzed in different works. A plasmid that en-
codes the non-metastatic clone 23, isoform H1 (nm23-H1) gene, a metastasis suppressor 
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gene under the control of the hTERT promoter, inhibited tumor growth and distant me-
tastasis when evaluated in a lung cancer xenograft model after intratumoral injection with 
the vector [36]. In another work, a plasmid that encodes KK-64, a cytotoxic peptide, under 
the control of hTERT was administered in the form of DNA/liposome complexes to mice 
previously inoculated with mouse hepatocarcinoma cell line H22, with a reduction in tu-
mor growth observed [37]. A novel version of the hTERT promoter using a VISA (VP16-
Gal4-WPRE integrated systemic amplifier) system was reported. In this work, the hTERT-
VISA system was used to drive the expression of E1A, an adenoviral transcription factor 
with anticancer properties. Significant antitumor activity was reported in an ovarian can-
cer xenograft murine model after intravenous delivery of the plasmid/liposomal nanopar-
ticles [38]. 

The BIRC5 gene is active in different cancers but not in normal tissues. It drives the 
expression of survivin, an apoptosis inhibitor important for cancer development [39]. This 
promoter has been used in a minicircle system with potential clinical use for prostate can-
cer diagnosis and treatment [40]. In another work, the survivin promoter was used in 
combination with hTERT promoter to form a hybrid promoter to increase its strength of 
expression in transfected cancer cells. This hybrid promoter directed the expression of 
Herpes simplex virus-1 thymidine kinase (HSVtk) and the mouse granulocyte-macro-
phage colony-stimulating factor (GM-CSF). These transfected cancer cells were implanted 
in mice, and tumor growth inhibition was observed [41]. 

A candidate promoter for breast cancer is Erb-B2 receptor tyrosine kinase 2 (ERBB2) 
gene promoter; however, this is expressed in only 20–25% of tumors [42-44], and it is also 
active in prostate, pancreas, colon, and ovary cancer cells [45-47]. The ERBB2 gene pro-
moter has been used in some works, as in a clinical trial for breast cancer where the pa-
tients received intratumoral injection of a plasmid that encodes the E. coli cytosine deam-
inase under the control of the ERBB2 gene promoter to activate the prodrug fluorocytosine 
[48]. In another work, a plasmid containing a minimum version of this promoter directing 
the expression of HSVtk to confer selective cytotoxicity to ganciclovir was constructed and 
proved in nude mice bearing human breast cancer cells. The administration of ganciclovir 
in human breast cancer cells transfected with this plasmid reduced tumor growth [49]. 

Regarding lung cancer, the thyroid transcription factor-1 (TTF-1) promoter is active 
in small cell lung carcinoma and adenocarcinoma [50,51]. Low constitutive expression is 
found in healthy lung cells, such as type II alveolar cells [52]. The use of this promoter to 
drive the expression of miR-7, a powerful tumor suppressor, was reported. This study 
showed the targeting of transgene expression in the tumor cells via a remote hypodermic 
injection of a plasmid, downregulating tumor growth in a nude mice model of lung cancer 
[53]. 

Prostate-specific antigen (PSA) is regulated by the prostate cancer promoter, which 
has low constitutive expression in the prostate epithelium [54]; however, high levels are 
detected in patients with metastatic prostate cancer [55]. It is known that the activity of 
this promoter can be regulated by DNA-binding proteins [55], and this regulation may be 
androgen dependent or independent [54,56]. A recently published work reported using 
liposomes with a vector containing the PSA promoter driving the expression of perforin 
(a protein that makes pores on the plasma membrane) in cancer cells. After intravenous 
administration of this therapy, a reduced tumor volume was observed in a xenograft 
model of prostate cancer [57]. 

4. Tumor-Specific Antigens for DNA Vaccination 
To carry out DNA vaccination for cancer therapy, a component of great value is the 

tumor-specific antigens ((TSAs) antigens expressed only in cancer cells) or tumor-associ-
ated antigens ((TAAs) antigens expressed in cancer cells and some normal cells). These 
are molecules present in tumor cells of different origins, which by synthesizing them as a 
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therapeutic transgene, will help increase the number of epitopes necessary for the activa-
tion and stimulation of an antigen-specific immune response [58]. Tumor cells express 
antigens that, to different extents, can also be found in normal cells, as shown in Table 1. 

Table 1. Classification of tumor antigens. 

Categories Type of Antigen Examples References 

Tumor-specific antigens 

Viral antigens 
L1, E6, and E7 from human papillomavirus 

(HPV) [59,60] 

HBsAg from hepatitis B virus (HBV) [61,62] 
 Epstein–Barr nuclear antigens (EBNAs) [63,64] 

Private neoantigens Differs from each patient [65] 

Public neoantigens 

TP53 [66] 
KRAS [67] 

PIK3CA [68] 
Histone H3.3  [69] 

Tumor-associated antigens 

Overexpressed proteins 

Receptor tyrosine-protein kinase erbB-2 [70,71] 
Epidermal growth factor receptor (EGFR) [72] 
Mucin 1, cell surface associated (MUC1) [73] 

Tumor protein D52 (TPD52) [74] 
Mammaglobin A (Mam-A) [75,76] 

Insulin-like growth factor (IGF) binding protein 2 
(IGFBP-2) [77] 

Differentiation antigens 

Prostate-specific membrane antigen (PSMA) [78,79] 
Prostatic acid phosphatase (PAP) [80,81] 
Prostatic specific antigen (PSA) [78,82] 

Carcinoembryonic antigen (CEA) [83] 
Tyrosinase [84] 

Glycoprotein 100 (gp100) [85] 
Dickkopf-1 (DKK1) [86] 

Cancer testis antigens 
MAGE-A [87,88] 

SSX-2 [89,90] 
NY-ESO-1 [91,92] 

Different viruses are related to the induction of malignant transformation of cells, 
such as Epstein–Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), human 
immunodeficiency virus (HIV), human herpesvirus 8 (HHV-8), human papillomavirus 
(HPV), human T-lymphotropic virus (HTLV), Merkel cell polyomavirus (MCV) and sim-
ian virus 40 (SV40) [93,94]. Some of their viral proteins are considered TSAs because they 
are expressed exclusively in cancer cells derived from viral-infected cells [95]. 

Neoantigens are protein derivatives that, during aberrant replication of tumor cells, 
obtain certain mutations that make them different from the original proteins in a healthy 
cell. Neoantigens are divided into private (differ among patients) or public (shared among 
patients) [96]. 

Some antigens are overexpressed in tumors compared to their expression level in 
healthy cells. There is a correlation between some tumor-specific promoters and some 
overexpressed antigens or antigens with aberrant expression. As discussed above, the 
cause of uncontrolled protein expression lies in the promoter and its regulatory systems, 
which cause the overexpression of the regulated gene in either a normal or a mutant ver-
sion (aberrant proteins). These are considered TAAs because they may be expressed in 
cancer and normal cells [97]. 

Tumor differentiation antigens are expressed in the tumor cells and normal cells of a 
specific tissue differentiation germ line [98]. These are also considered TAAs. 
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Cancer testis antigens are antigens whose normal expression occurs in germ cells. 
They are not present in adult somatic cells. Their deregulation leads to their expression in 
somatic cell tumors [99]. 

Synthetic antigens are artificially modified antigens that enhance immune responses 
[65]. We can include here multiepitope antigens for personalized cancer therapy [100], 
mutant versions of viral antigens used to eliminate oncogenic potential [101], or modifi-
cations to germline tumor antigens intended to augment immune potency and break im-
mune tolerance [102], among others. 

5. DNA Vaccines Encoding Fusion Proteins 
It has been found that when DNA vaccines are employed alone, there is poor immune 

stimulation [103]. Different modifications can be designed for DNA vaccines to improve 
immune responses. One of these is the fusion of the antigen of interest with other antigens 
or immune-stimulating proteins. The resulting proteins are named fusion proteins or chi-
meric proteins. Evidence of the use of fusion proteins with promising results is discussed 
in this section. 

5.1. Antigen Fusion to Organelle-Targeting Sequences 
In 1999, Chen et al. [104] demonstrated the powerful antitumor effect of a DNA vac-

cine whose therapeutic gene is the result of the fusion of the E7 antigen of HPV-16, linked 
to the sorting signals of the lysosome-associated membrane protein-1 (LAMP-1) and a 
signal peptide at its amino-terminal of the tissue plasminogen activator (TPA). The TPA 
signal peptide is a signal that directs the expression of the therapeutic transgene to the 
endoplasmic reticulum (ER). This vaccine was implemented in a murine cervical cancer 
model where a powerful antitumor effect was obtained, mediated by E7-specific cytotoxic 
T lymphocytes (CTLs) and E7-specific antibodies, controlling hepatic and pulmonary me-
tastasis in comparison with the E7 antigen alone. 

Lysosome-targeting by antigen fusion to LAMP1 is still applied in different cancer 
models. A recent work by Adhikari et al. [105] reports the design of a multi-epitope DNA 
vaccine using a universal intracellular targeted expression (UNITE) platform, which in-
volves the fusion of antigens to LAMP1 with the aim of improving CD4 and CD8 medi-
ated anti-tumor responses. This strategy generated strong cellular and humoral immune 
responses and enhanced survival in a murine model of glioblastoma. 

Calreticulin, a resident chaperone of the ER, has been used in DNA vaccines fused to 
antigens for ER targeting through its signal peptide. Cheng et al. [106] reported for the 
first time that treatment with a DNA vaccine encoding the fusion of E7 to calreticulin elic-
ited an antigen-specific immune response mediated by CD8+ T cells in a murine cancer 
model. 

Our research group has designed several DNA vaccines with enhanced antitumor 
effects by using E6 and/or E7 antigens from HPV-16 fused to a signal peptide from calre-
ticulin to direct the antigen expression to the ER using the biolistic delivery method in a 
murine cancer model [107]. In addition, the importance of using a KDEL sequence for 
antigen retention in ER has been evaluated [108]. Other groups have reported the fusion 
of cancer antigens with different signal peptides for ER targeting [109,110]. 

In 2021, we designed a therapeutic transgene under the CMV promoter, which con-
tains the HPV-16 E7 antigen fused to the cyclooxygenase (COX)-2 protein (an ER resident 
enzyme involved in inflammatory responses). The expression of this construct was di-
rected to the ER by the presence of a signal sequence from COX-2, activating the ER stress 
response and the unfolded protein response (UPR) induced by protein accumulation in 
this organelle. In addition, this fusion protein induced antigen degradation by the ER-
associated degradation (ERAD) pathway due to the presence of a 19-amino acid COX-2 
degradation cassette. The results show the powerful antitumor effect of this fused antigen 
in murine prophylactic and therapeutic cancer models [111]. Furthermore, when the cat-
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alytic domain form COX-2 is deleted (but the signal peptide and ERAD sequence are con-
served), the anti-tumor response is similar to the fusion to complete COX-2, demonstrat-
ing that the anti-tumor effect is dependent on ER and ERAD targeting [112]. 

5.2. Antigen Fusion to Heat Shock Protein (HSP) 70 
HSP70 is a protein that functions as a molecular chaperone [113]. It is also recognized 

that HSP70 stimulates antitumor responses by transporting tumor-derived immunogenic 
peptides, stimulating antigen presentation, or being recognized as a natural immunogen 
when using HSP sequences from different species [114]. 

Since the end of the 20th century, the fusion of HSP70 with antigens has been used 
to induce potent antitumor responses [115]. Dickkopf-1 (DKK1) is an antigen that has been 
used in protein fusions with HSP70. It is an antigen associated with multiple myeloma, 
which significantly decreases tumor development, prophylactically or therapeutically, al-
lowing for the survival of the murine model in which they were evaluated [116]. 

Mucin 1, cell surface associated (MUC1) has also been reported as applicable in fu-
sion with HSP70; in this case, the MUC1 protein was modified for secretion. The DNA 
vaccine was applied in prophylactic and therapeutic murine models of melanoma, induc-
ing the suppression of cell growth of tumor cells expressing MUC1 and increased prolif-
eration of antigen-specific lymphocytes [117]. 

In another work, a modified version of the E7 antigen from HPV-16 was fused to 
HSP70 from Mycobacterium tuberculosis. When a DNA vaccine was administered, a more 
significant therapeutic effect against E7-expressing tumor cells in prophylactic and thera-
peutic assays in mice was observed [118]. 

Other strategies involving antigen fusion to other HSP proteins, such as HSP60 [119], 
and antigen fusion to other chaperones [120] are also reported for DNA vaccination, show-
ing promising results. 

5.3. Antigen Fusion to Cytokines 
Cytokines are small proteins secreted by cells for communication and signaling be-

tween them. Cytokines have been useful in the investigation of cancer vaccines [121]. 
Some of the cytokines used are encoded alone [122] or in combination with other cytokines 
[123] to induce systemic or local antigen-independent immune activation when adminis-
tered by DNA vaccination [124]. The other strategy is the combination of cytokines with 
antigens, even using them as independent transcripts [125], or as fusion proteins. 

The chemokine macrophage inflammatory protein-3α (MIP-3α), also known as C-C 
motif chemokine ligand 20 (CCL20), is a cytokine with a strong chemotactic effect on lym-
phocytes. Recent studies have reported the fusion of MIP-3a to the melanoma glycopro-
tein 100 (gp100) antigen in the context of a DNA vaccine. Administration by intramuscular 
electroporation generates a strong antitumor response in a murine melanoma model, 
causing an increase in CD4+ and CD8+ T lymphocytes, the latter being significantly higher 
than the control vaccine without chemokines [126]. 

Biragyn et al. reported the construction of protein and DNA vaccines by fusing inter-
feron-inducible protein 10 (IP-10) and monocyte chemotactic protein 3 (MCP-3) to lym-
phoma Ig variable regions (sFv). They observed that DNA vaccination with the plasmids 
encoding the fusion proteins induced more potent protection against a tumor challenge 
than protein vaccines. In addition, they report that this fusion converted a non-immuno-
genic antigen into a potent immunogen, inducing a T-cell-mediated antitumor immunity. 
This group has suggested targeting antigens to APCs for chemokine receptor-mediated 
uptake as a mechanism responsible for the antitumor effects [127]. 

Other evidence that reflects the efficacy of using interleukin (IL)-2 with the E7 antigen 
dates back to 2007. In this work, a group of researchers demonstrated that the fusion of 
E7 to IL-2 administered by biolistic has a powerful antitumor effect and leads to the strong 
response of antigen-specific lymphocytes with respect to the use of IL-2 and the antigen 
alone [128]. 
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5.4. Antigen Fusion to Other Immune-Stimulating Sequences 
Other workgroups have evaluated the antitumor effects that specific antigens can 

have when fused to other immune-stimulating sequences. Recent work from Wang et al. 
showed that the melanoma-associated antigen D4B (MAGED4B) and four-jointed box ki-
nase 1 (FJX1) antigens in a DNA vaccine against head and neck squamous cell carcinoma 
(HNSCC) caused a powerful antitumor response in murine models. In this work, these 
antigens were fused to the Dom sequence of the C fragment of tetanus toxin as a stimulant 
of the activation of CD4+ T lymphocytes and the murine IgH signal peptide that directs 
its expression to secretion [129]. 

In the context of modeling cancer with HPV-16, the use of B-cell-activating factor 
(BAFF) was reported. As its name implies, BAFF is a stimulant of B and T cells, character-
ized by being a membrane protein secreted after synthesizing by the ER–Golgi system. 
This protein was fused to the E7 antigen of HPV-16 and was used as a DNA vaccine in a 
murine model, where an increase in CD8+ T lymphocytes for E7 was observed, which 
counteracted tumor growth in mice, promoting their survival. In addition, it was observed 
that the expression of E7 is directed to the ER by BAFF, this being the main factor that 
potentiates this DNA vaccine [130]. 

In turn, our research group has reported a DNA vaccine encoding the E7 antigen of 
HPV-16 fused to the calreticulin signal peptide and to SA-4-1BBL, an oligomer of the lig-
and that binds to the 4-1BB receptor that works with innate, adaptive pleiotropic effects. 
We observed the antigen being targeted to the ER by the signal peptide in vitro and a 
powerful antitumor response in vivo. This response was directed by T lymphocytes spe-
cific to the E7 antigen in a murine model of HPV with E7-expressing cells, showing 
prophylactic and therapeutic efficacy [131]. 

6. DNA Cancer Vaccines in Combination with ICB Therapies 
Recently, several checkpoints for the regulation of immune responses have been re-

ported. Different studies in animal models and humans have demonstrated that ICB ther-
apy (mainly using monoclonal antibodies) may improve the antitumor responses of T 
lymphocytes against cancer cells. Some examples of inhibitory checkpoints are PD-1/PD-
L1 and CTLA-4/B7-1/B7-2, among others [132]. Since 2011, the United States Food and 
Drug Administration (FDA) has approved ICB therapies for different cancers [133,134]. 
Although some patients treated with ICB therapy show promising results, not all patients 
respond to it. Therefore, new strategies have emerged in combining ICB therapy with 
plasmid DNA vaccines encoding TSAs or TAAs, showing that the antitumor effect of gene 
therapy is potentially higher when used in combination than when used alone [135]. 

Using a DNA vaccine encoding B16 NY-ESO-1 T cell epitopes (SCIB2) in combination 
with regulatory T cells (Treg) depletion, anti-CTLA-4 or anti-PD-L1 produced different T 
cell responses and effects in tumor growth in mice. In particular, it led to a greater empha-
sis on the combination of SCIB2 with PD-1 since the researchers observed less associated 
toxicity and complete tumor regression compared to the other combinations [136]. 

The effect of the combination of a plasmid DNA that encodes either ovalbumin 
(OVA) or the gp100 antigen adjuvanted with a plasmid that encodes IL-12, combined with 
anti-CTLA-4 and anti-PD-1 ICB therapy, was analyzed in a B16F10 murine melanoma 
model. Combined therapy showed strong activation of the antigen-specific immune re-
sponse and elevated production of antigen-specific antibodies and an increase in intra-
tumoral T CD8+ infiltration [137]. 

A murine mastocytoma P815 tumor model was used to analyze a therapeutic DNA 
vaccine encoding the P815A antigen in combination with anti-CTLA-4 and anti-PD-1 ICB 
therapy. The combined therapies induced a delay in tumor growth and enhanced antigen-
specific T cell infiltration in tumors compared to individual therapies [138]. 
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Another study reported the synergy of a DNA vaccine encoding the TERT antigen in 
combination with an anti-CTLA-4 or anti-PD-1 ICB therapy. They observed that the com-
bination therapy, especially with anti-CTLA-4, induced a better antitumor response than 
the ICB or DNA vaccine alone. This effect was analyzed in a murine model with TC-1 
tumors [139]. 

In two models of murine colon carcinoma with MC38 and CT26 cells, a DNA vaccine 
that carries eight neoantigens of the MC36 cell line was combined with an anti-CTLA-4 
ICB therapy. In both models, using the combined therapy, an increase in B cells and an 
increase in neoantigen-specific T lymphocytes were observed, obtaining a significant re-
duction in tumor size [140]. 

In 2021, work was carried out using a DNA vaccine containing the vesicular stoma-
titis virus glycoprotein (VSV-G) as a carrier of foreign T cell tumor epitopes (pTOP) for 
the activation of the innate and epitope-specific immune response. The treatment was ad-
ministered by intramuscular injection followed by electroporation in combination with 
anti-PD-L1 and anti-CTLA-4 ICB therapy, manifesting a potent antitumor response that 
increased the survival of mice in different tumor models [141]. 

E6 and E7 antigens from HPV 16 and 18 were used in a DNA vaccine in combination 
with a vaccinia boost and anti-PD-1 ICB therapy in mice with TC-1 tumors. In this report, 
the DNA vaccine encodes the antigens as a fusion protein with a 3′ signal sequence and a 
5′ sequence encoding the HSP70 of Mycobacterium tuberculosis. The viral antigens E6 and 
E7 are oncoproteins; thus, point mutations were included to eliminate the oncogenic po-
tential. They referred to this mutated form of the antigens as detox. The resulting plasmid 
is named pNGVL4a-Sig/E7(detox)/HSP70, or pBI-1. The vaccinia virus expresses the E6/E7 
fusion protein and has been tested in several clinical trials, where it was well tolerated but 
with poor clinical benefit. With this strategy, a good safety profile and therapeutic efficacy 
were found, alone or in conjunction with the vaccinia boost, with or without the ICB ther-
apy in mice [101]. 

A DNA vaccine for glioblastoma was recently reported that expresses the VSV-G 
with the glioblastoma antigen tyrosinase-related protein 2 (TRP2) epitope sequence 
TRP2180-188 inserted in permissive sites. ICBs such as anti-PD-1 and anti-CTLA-4 accompa-
nied this strategy. It was observed that although the combination of DNA vaccine and ICB 
therapy did not induce a significantly different survival rate in the treated mice, an in-
crease in effector T cells to Treg ratio was observed, as well as an increase in the release of 
interferon (IFN)-γ by CD8+ T lymphocytes that infiltrated into the brain after the admin-
istration of the combined therapy. This effect was analyzed in mice challenged with GL261 
cells [142]. 

7. Antibody Production by DNA Immunization 
Recently, DNA-encoded monoclonal antibodies (DMAb) have emerged as an elegant 

strategy to combat viral infections [143], and later, its capacity for cancer treatment appli-
cation was demonstrated [144]. They consist of synthetic plasmids that direct monoclonal 
antibody expression in vivo to overcome the limitations of traditional monoclonal anti-
bodies. The main advantages of DMAb are its rapid development and simple manufac-
turing processes [33]. 

In 2016, Kim et al. [144] reported that treatment of mice bearing the receptor tyrosine-
protein kinase (erbB-2)-positive human breast carcinoma cell line BT474 with a plasmid 
encoding an anti- erbB-2 DMAb resulted in a sustained antibody expression and an anti-
tumor efficacy similar to four doses of intravenously injected Herceptin antibody. 

This strategy has also been reported for prostate cancer using a plasmid that encodes 
a DMAb directed against the prostate-specific membrane antigen (PSMA) [145]. In this 
work, the authors observed an in vivo controlled tumor growth and significant survival 
in mice vaccinated with this plasmid. This antitumor effect may be mediated by antibody-
dependent cellular cytotoxicity through natural killer (NK) cells. 
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Duperret et al. [146] reported the construction of a synthetic plasmid encoding an 
anti-CTLA-4 monoclonal antibody. They reported that a single dose induces the expres-
sion of this antibody for several months. In addition, they observed that treatment with 
this DMAb induced tumor regression in Sa1N and CT26 tumor models in mice. 

In recent work, Perales-Puchalt et al. [147] reported using synthetic DNA that en-
codes bispecific T engagers (BiTEs, a fusion protein that combines the specificity of mAbs 
with the cytotoxic potential of T cells). This DNA-encoded Bite (DBiTE) was directed 
against erbB-2. Its in vivo expression lasted approximately four months with a single dose. 
Treatment with this kind of DMAb resulted in high T cell cytotoxicity against erbB-2-pos-
itive tumor cells and delayed cancer progression in mice. 

8. Delivery Methods for Plasmids in Cancer Therapeutics 
The plasmids used for gene therapy are usually administered directly into the tumor 

site to target cancer cells. Furthermore, plasmids used for vaccination are usually admin-
istered by mucosal delivery (where the presence of APCs improves vaccination efficiency) 
or by intramuscular, intradermal, or intratumoral injections to target either somatic cells, 
cancer cells, or immune cells for antigen production [148]. 

The simplest form of administration of plasmids is the injection of naked DNA. Due 
to their electrostatic characteristics, such as their negative charge and size, plasmids are 
often administered with other delivery methods to improve cell entry (Figure 4). This sec-
tion reviews some of the most commonly used delivery methods for plasmid DNA-based 
cancer therapies analyzed in in vivo experiments. 

 
Figure 4. Different strategies using plasmids for therapeutic purposes. DNA delivery methods can 
be divided into physical- and chemical-mediated methods. Figure created in Biorender.com. 
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8.1. Naked DNA Injection 
Wolff et al. reported the direct injection of naked DNA for the first time in 1990 [149]. 

In this work, they injected plasmids encoding different reporter genes in the skeletal mus-
cle of live mice. They demonstrated that transgenes were expressed within the muscle and 
that expression was present for at least two months. 

There is more evidence of the safety of the administration of naked DNA. In 2000, 
the results of a phase I/II clinical trial for prostate cancer were published, wherein the 
safety and immunity of a naked DNA vaccine encoding PSMA or CD86 in separate ex-
pression vectors or a combined plasmid (PSMA/CD86) were reported. The effects of these 
plasmids were compared with the use of an adenoviral vector encoding PSMA. Only 50% 
of patients with naked DNA administration with PSMA and CD86 showed signs of im-
munization (evidenced by a delayed-type hypersensitivity reaction after treatment). In 
total, 67% of patients immunized with the PSMA plasmid and recombinant GM–CSF 
showed immunity, while all patients vaccinated with PSMA/CD86 plasmid and GM–CSF 
became immunized. Finally, all patients who received the PSMA adenoviral vector and 
the PSMA plasmid were successfully immunized. No short- or long-term side effects were 
reported following immunizations [150]. 

To increase the immunogenicity of naked DNA vaccines against cancer, a working 
group has proposed the administration of these vaccines in peripheral lymph nodes, 
where they reported 100- to 1000-fold enhanced immunogenicity, inducing a strong cel-
lular immune response in a murine cancer model. This strategy is promising for improv-
ing vaccination immunogenicity in humans [151]. 

Wu et al. demonstrated in a murine model that the application of naked DNA via 
systemic administration in the inferior vena cava targets the proximal tubules of the kid-
neys significantly compared to other organs, such as the lung, liver, and spleen, demon-
strating the expression of the β-galactosidase reporter gene in the cell cytoplasm after 30 
min of its application, the expression of which was then prolonged for 35 days, without 
any secondary effect. They propose using this administration route for naked DNA ther-
apy against kidney carcinoma and other kidney diseases [152]. 

8.2. Electroporation 
Due to cell membrane impermeability preventing the introduction of genetic mate-

rial, electroporation (also called electropermeabilization or gene electrotransfer) was de-
veloped. Electroporation involves the use of electrical pulses that allow for the formation 
of small pores in the membrane, through which the plasmids have the opportunity to 
enter the interior of the cell, with the stimulation of the immune system per se [153]. This 
technique was developed by Neumann et al. [154] and has demonstrated to be one of the 
most effective methods for DNA delivery [155]. 

One of the studies that support the stimulation of the immune system by electro-
poration is that of Sales et al. This group reported that electroporation stimulates the local 
migration of antigen-presenting cells, thus allowing for a greater antitumor response in 
conjunction with a DNA vaccine expressing the fusion of the E7 antigen to the HSV-1 gD 
protein in an HPV cancer model [156]. 

Recently, Paolini et al. reported the delivery of plasmids encoding an antibody in 
single-chain format (scFv) against the HPV-16 E6 and E7 proteins in three different murine 
preclinical models [157]. They demonstrated the efficient antitumor response induced by 
scFv delivered as intrabodies by electroporation, with the induction of a delayed tumor 
progression and large apoptotic areas in tumors. 

In 2020, Jacobs et al. compared the antitumor effect of intramuscular and intra-
tumoral electrotransfer of plasmids encoding anti-PD1 and anti-CTLA-4 antibodies in a 
murine cancer model. They observed a similar antitumor effect between both delivery 
sites, suggesting the tumor as an appealing delivery site for DNA-based mAb therapies 
[158]. 
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IL-12 is an interleukin with a proinflammatory action that stimulates CD3+ lympho-
cytes. IL-12 has been used for several years through DNA vaccination in combination with 
other immunogens to stimulate the immune system in viral diseases [159] and cancer 
[160]. Recently, Jacobs et al. reported the intratumoral DNA electroporation in mice with 
plasmids that encodes IL-12, anti-PD1 and anti-CTLA-4 antibodies [161]. This triple-com-
bination therapy induced CD8+ T cell infiltration in electroporated tumors and a signifi-
cant anti-tumor response. 

In 2022, a working group highlighted the use of DNA vaccines that encode IL-12 and 
the plasmid that encodes anti-CD3, an intratumoral T-lymphocyte stimulant [162]. They 
showed their effectiveness through intratumoral electroporation, improving the prolifer-
ation of T-lymphocytes and their cytotoxic function, in addition to the production of cy-
tokines. 

Intratumoral electroporation with a plasmid that encodes IL-12 in combination with 
a plasmid that encodes IL-2 has been reported in a murine model of melanoma with 
B16.F10 cells. In this work, a significant tumor growth delay and regression was observed, 
with recruitment of CD4+ and CD8+ cells [163]. 

Several clinical trials are using intramuscular [164] and intratumoral electroporation 
[165-167] for delivery of plasmids encoding IL-12 in combination with TSAs and other 
immunomodulatory strategies with promising results. 

8.3. Biolistic 
Biolistic is an alternative technique proposed to make gene delivery more efficient, 

using gold particles that can measure from 1 to 4 µm covered in therapeutic DNA. These 
are applied through cartridges and a gene gun device that allows for the release of parti-
cles at high speed, utilizing helium (a noble gas) at low pressure (200–300 psi) [168]. This 
technique has been used in plant and animal cells [169]. 

It has also been observed that when using 40 nm particles, there is an efficient ex-
pression of the transgenes of interest with a conventional size; however, the use of nano-
particles allows small cells to be transfected compared to microparticles while decreasing 
tissue damage [170]. 

In cancer research, gold particles are covered with therapeutic genes of different 
kinds, ranging from adjuvants (to stimulate the immune system), such as tumor-specific 
antigens, to the use of proapoptotic genes to combat this disease. In 1995, treatment of the 
IFN-γ and IFN-α genes in a murine antitumor model with biolistic led to a significant 
reduction in tumor growth compared to a control group of mice [171]. 

In 2009, a study reported the antitumor effect of a naked DNA vaccine encoding 
calreticulin fused to the E7 antigen by biolistic, comparing gold particles coated with a 
plasmid (the conventional biolistic technique) and the use of a noncarrier DNA vaccine 
without any particle coating. This strategy was applied in a murine model of cervical can-
cer. This work showed an increase in the number of CD8+ T lymphocytes against E7 in 
mice treated with noncarrier naked DNA, complemented by activation in the production 
of neutralizing antibodies against E7, and thus an effective antitumor effect. In addition, 
it was observed that the mice did not have skin burns following the application of non-
carrier naked DNA compared with the conventional technique. The use of noncarrier na-
ked DNA delivery by biolistic has the advantage of reducing the costs of the vaccine, as it 
avoids using gold particles [172]. 

8.4. DNA–Liposome Complexes and Lipid Nanoparticles 
Liposomal complexes were developed to facilitate the delivery of DNA to cells since 

they are composed of phospholipids (similar to the membrane) or have cationic charges 
increasing the delivery efficiency of the genetic material. Conversely, lipid nanoparticles 
(LNPs) are sphere-shaped nanovesicles composed of ionizable cationic lipids that permit 
the encapsulation of nucleic acids in their internal aqueous phase. LNPs have a high en-
capsulation efficiency and stability, enhanced cellular uptake, and reduced toxicity [173]. 
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One of the first tests in a melanoma model showed high expression of chloramphen-
icol acetyltransferase (CAT), a reporter gene, by injecting free DNA intratumorally, com-
pared to injecting DNA in the company of cationic liposomes, lipofectamine, and DC-
chol/DOPE. This test also reported more efficient expression of genes using the CMV pro-
moter rather than the SV40 or T7 promoters [174]. 

A comparative study of the delivery efficiency of a plasmid encoding CAT was car-
ried out between complexes of the cationic liposomes that carry DNA aggregates against 
naked DNA in a murine melanoma model. Using labeling with 3H-thymidine [3H], they 
detected tumor-associated DNA and liposomal complexes with [14C]-dioleoylphosphati-
dylethanolamine 24 h after administration. With these data, they observed highly variable 
expression, a higher transfection rate in small tumors, and efficient liposomal–DNA com-
plex binding to the tumors [175]. 

To streamline the delivery of genetic material through liposomes, working groups 
have created neutral or positively charged liposomal complexes containing a folic acid–
cysteine–polyethyleneglycol–phosphatidylethanolamine (FA–Cys–PEG–PE) conjugate. 
These molecules were tested in in vitro and in vivo models with the intraperitoneal appli-
cation of L1210A cells, corresponding to mouse lymphocytic leukemia, obtaining an opti-
mal delivery range in vitro and in vivo only for the cationic liposome complex with FA–
Cys–PEG–PE. This observation was detected through luciferase expression as a reporter 
transgene, observing a dose-dependent inhibition of the concentration of FA–Cys–PEG–
PE. The results show the efficiency of gene therapy delivery with a cationic liposome com-
plex that presents a specific ligand for the folate receptors in cancer [176]. 

Further evidence of the suitability of using liposomal complexes as DNA carriers is 
found in the liposomal formulation (extruded DOTAP:cholesterol (DOTAP:Chol)–DNA 
complex), a cationic complex, which demonstrated that there was a large difference in the 
expression levels of the luciferase transgene between the in vitro and in vivo models in 
mouse and human lung tumor cells versus healthy cells. With the use of the liposomal 
complexes, a high activity of phagocytosis of the complexes in tumor cells was observed 
[177]. 

Currently, in cancer research, cationic liposomes are used as vectors for the delivery 
of therapeutic transgenes [178], even participating in the cytotoxicity of tumor cells. To 
demonstrate this, Cong et al. made a reporter gene DNA complex with a cationic liposome 
formed by cholesterol, DOTAP, and DSPE-mPEG2000. The results showed an increase in 
tumor cell death, promoting the activation of dendritic cells and inhibiting tumor growth 
and metastasis [179]. 

Another strategy involving DNA administration in ternary complexes to target den-
dritic cell uptake yielded promising results. In a model of melanoma, the effect of the pul-
monary administration of naked plasmid DNA pUb-M (encoding ubiquitinated murine 
melanoma gp100 and TRP2 peptide epitopes) or a ternary complex (composed of pUb-M 
plus dendrigraft poly-L-lysine (DGL), and γ-polyglutamic acid [γ-PGA]) was compared. 
The administration was by inhalation in mice. The results show the expression of the 
transgenes of interest in areas with a high concentration of alveolar macrophages. In ad-
dition, a significant increase in the inflammatory cytokines of tumor necrosis factor (TNF)-
α, interferon (IFN)-γ, and IL-6 was observed. Additionally, significant inhibition of the 
metastasis of B16-F10 cells, a murine melanoma cell line, was observed with better anti-
tumor effects when using the ternary complex versus the controls [180]. 

There are some reports using LNPs for DNA vaccine delivery in other murine cancer 
models. In 2021, Moku et al. report the effect of LNPs functionalized with the mannose-
mimicking shikimoyl- and quinoyl- groups for in vivo targeting the mannose receptor of 
dendritic cells [181]. The subcutaneous administration of LNPs carrying a plasmid encod-
ing the antigen MART1 delayed melanoma growth significantly and improved the sur-
vival of mice in a therapeutic assay. 

In another work, Liu et al. report the use of lipid-protamine-DNA nanoparticles to 
drive the expression of “trap” a C-C motif chemokine ligand 2 (CCL2)- binding antibody 
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[182]. CCL2 is a key regulator secreted by tumor-associated adipocytes that induce an im-
munosuppressive microenvironment. They reported that treatment with LNPs to drive 
the local and transient expression of trap protein by cancer cells successfully remodels the 
immunosuppressive tumor microenvironment in a triple negative cancer murine model. 

8.5. Other Nanoparticle Systems 
Recently, other nanoparticle (NP) systems have been increasingly applied in DNA 

vaccines, as evidence shows that their implementation with plasmids improves delivery 
systems in cells. Here, we list some works reported in the literature employing different 
NP systems for DNA vaccination in animal models. 

In this context, Sun et al. demonstrated how a DNA vaccine encoding OVA antigen, 
conjugated with calcium phosphate NPs functionalized with mannose and bisphospho-
nate, improves the efficiency of vaccine administration, targeting the antigen-presenting 
cells through C-type lectin receptors (CLRs) and triggering a specific antibody response 
against the antigen. This effect was analyzed in a murine tumor model with OVA-express-
ing E.G7 tumor cells [183]. 

Another strategy is the use of peptide-based delivery systems. RALA is a self-assem-
bled peptide-based cationic nanostructure composed of 30 amino acids developed in 2014, 
which can deliver nucleic acids and other anionic molecules to the cells crossing the cell 
membrane with low toxicity [184]. In a prostate cancer model, a strategy has been reported 
involving a DNA vaccine encoding prostate stem cell antigen (PSCA), delivered via a 
patch of soluble silicon microneedles containing cationic RALA/pDNA NPs, generating a 
strong immune response in the tumor [185]. 

The use of NPs has also been analyzed in NP-coated bacteria. In 2015, a study was 
carried out wherein a DNA vaccine encoding autologous vascular endothelial growth fac-
tor receptor 2 (VEGFR2) was delivered utilizing Salmonella coated with cationic polymers, 
thus evading cellular phagosomes and increasing its dissemination via the blood after oral 
administration. This delivery method, when orally administered, caused efficient T cell 
activation, cytokine production, angiogenesis suppression, and tumor necrosis [186]. 

9. Clinical Trials Using DNA Vaccines 
In clinical trials, DNA vaccination was safe and well tolerated, with no important 

adverse effects reported. One of the first concerns about using DNA vaccines is the risk of 
integration into the human genome, although it has been demonstrated that this risk is 
low [187]. The FDA guidance for DNA vaccines is that the plasmid integration rate would 
be substantially lower than the spontaneous mutation rate [188]. 

Another important challenge in DNA-based therapies is to increase DNA cell uptake. 
As shown in Table 2, human intramuscular injection followed by electroporation is one of 
the most efficient delivery methods [189]. Recently, in clinical trials, intratumoral electro-
poration has been demonstrated to induce tumor regression at distant sites [190], mainly 
for melanoma and other skin cancers where tumors are accessible for this treatment. How-
ever, it has been reported that in mice, intramuscular DNA injection followed by electro-
poration augments the chances of plasmid integration into host genomic DNA [191]; 
hence, there is a need for the development of safer and more efficient delivery methods. 

When plasmid DNA-based strategies are translated to clinical trials, different results 
have been reported ranging from non-significant anti-tumor responses to effective thera-
peutic effects with the induction of antigen-specific CD8+ T cells and tumor regression. 
One of the main challenges in DNA vaccination is the induction of a potent immune stim-
ulation. Different strategies have been employed to overcome this, such as consecutive 
vaccine strategies (known as prime-boost immunization) or the administration of DNA 
vaccination in combination with ICB therapy, other monoclonal antibodies, immunostim-
ulatory molecules, adjuvants, or drugs, among others [192]. Most of the clinical trials with 
DNA vaccines remain in Phase I–II. 



Pharmaceutics 2022, 14, 1861 16 of 28 
 

 

Table 2. Clinical trials using DNA vaccines for cancer treatment. 

Phas
e 

Type of Can-
cer 

Site of Admin-
istration and De-

livery Method 
Description of Intervention and Key Results 

Trial/ 
Status/ 

Reference 

I 

Stage III-IV or 
Recurrent 

Ovarian Can-
cer 

Intradermal injec-
tion 

Intervention: pUMVC3-hIGFBP-polyepitope DNA vaccine 
encoding Insulin-Like Growth Factor Binding Protein-2 

(IGFBP-2) mixed with rhuGM-CSF monthly for three 
months. 

Key results: Stimulates the production of type 1 T lympho-
cytes without evidence of regulatory responses 

NCT01322802/ 
Completed/ 

[193] 

II 

Non-metasta-
sic castration-

sensitive 
prostate can-
cer (CSPC) 

Intradermal injec-
tion 

Intervention: pTVG-HP DNA vaccine encoding PAP with 
rhGM-CSF. 

Key results: No overall increase in 2-year metastasis-free 
survival (MFS). 

NCT01341652/ 
Completed/ 

[194] 

II 

Metastatic 
castration-re-
sistant pros-
tate cancer 

(CRPC) 

Intradermal injec-
tion 

Intervention: sipuleucel-T with or without pTVG-HP DNA 
vaccine encoding PAP 

Key results: The combination of sipuleucel-T with pTVG-
HP can increase the diversity of the cellular and humoral 

immune response. 

NCT01706458/ 
Completed/ 

[195] 

II 
Metastasic 

CRPC 
Intradermal injec-

tion 

Intervention: pTVG-HP is a plasmid encoding PAP, with 
Pembrolizumab, a (PD-1)-blocking antibody 

No study results are available 

NCT04090528/ 
Recruiting/ 

[196] 

I Head and 
Neck Cancer 

Intramuscular in-
jection and elec-

troporation 

Intervention: pNGVL-4a-CRT/E7 (detox) DNA vaccine en-
coding calreticulin and HPV-16 E7 antigen with cyclophos-

phamide 
No study results are available 

NCT01493154/ 
Terminated/ 

[197] 

I 
Nine types of 

cancer 

Intramuscular in-
jection and elec-

troporation 

Intervention: INO-1400 or INO-1401 Plasmid encoding 
hTERT variants, with or with-out plasmid encoding IL-12 
Key results: Survival of patients with pancreatic cancer, 

tolerance, enhanced CD8+ response  

NCT02960594/ 
Completed/ 

[164] 

I 
Prostate can-

cer 

Intramuscular in-
jection and elec-

troporation 

Intervention: INO-5150 encoding PSA and PSMA with and 
without INO-9012 encoding IL-12 

Key results: Dampening percentage rise in PSA and in-
creased PSA Doubling Time (PSADT) in patients. 

NCT02514213/ 
Completed/ 

[198] 

IB Breast Cancer 
Injection and elec-

troporation 
Intervention: Mammaglobin-A DNA vaccine 

No study results are available 

NCT02204098/ 
Recruiting/ 

[199] 

I, II 

Cervical in-
traepithelilal 

neoplasia 
(CIN) 2/3 

Intramuscular in-
jection 

Intervention: VB10.16 vaccine (HPV-16 E7/E6 protein 
linked to human chemokine MIP-1α) 

Key results: Tolerance and promising immunogenicity re-
sults dependent on specific T lymphocytes 

NCT02529930/ 
Completed/  

[200] 

I, IIA 
Cervical Can-

cer 

Intramuscular in-
jection and elec-

troporation 

Intervention: INO-3112 DNA vaccine (VGX-3100 encoding 
for modified HPV-16 and HPV-18, E6 and E7 antigens, and 

INO-9012 encoding IL-12)  
No study results are available 

NCT02172911/ 
Completed/ 

[201] 

I, IIA Head and 
Neck Cancer 

Intramuscular in-
jection and elec-

troporation 

Intervention: MEDI0457 (DNA immunotherapy targeting 
HPV16/18 E6/E7 with IL-12 encoding plasmids) in combi-

nation with Durvalumab for PD-1/PD-L1 blockade  

NCT03162224/ 
Completed/ 

[202] 
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Key results: Durable antigen-specific peripheral and tumor 
immune responses.  

II CIN 3 
Intramuscular in-
jection and elec-

troporation 

Intervention: GX-188E is a DNA vaccine encoding HPV-16 
and HPV-18 E6/E7 fusion proteins 

Key results: Effective therapeutic vaccine with histopatho-
logic regression and significantly higher fold changes in 

their IFNγ 

NCT02139267/ 
Completed/ 

[203] 

II Cervical can-
cer 

Intramuscular in-
jection and elec-

troporation 

Intervention: GX-188E DNA vaccine plus Pembrolizumab 
PD-1-blocking antibody 

Key results: This combination therapy showed preliminary 
antitumor activity 

NCT03444376/ 
Active, not recruit-

ing/ 
[204] 

II 
Cervical Can-

cer 
Intramuscular in-

jection  

Intervention: VB10.16 vaccine (HPV16 E7/E6 protein linked 
to human chemokine MIP-1α) in combination with Ate-

zolizumab PD-L1-blocking antibody 
Key results: No study results are available 

NCT04405349/ 
Active, not recruit-

ing/ 
[205] 

II Merkel Cell 
Carcinoma 

Intratumural in-
jection and elec-

troporation 

Intervention: DNA vaccine encoding IL-12 
Key results: The vaccine is secure, and produces a systemic 
immune response, increased peripheral and intratumoral 

specific T cells 

NCT01440816/ 
Completed/ 

[190] 

II Melanoma 
Intratumural in-
jection and elec-

troporation 

Intervention: DNA vaccine encoding IL-12 
Key results: Circulating PD-1+ CD4+ and CD8+ T cells de-
clined with treatment; specific immune responses to gp100 
were also detected and were correlated with an increase in 

CD8+, CD3+ T cells within the tumor. 

NCT01502293/ 
Completed/ 

[167] 

10. RNA Vaccines 
In recent years, RNA vaccines have gained substantial attention due to their rapid 

development and emergency approval for SARS-CoV-2 vaccination. RNA vaccines are 
similar to DNA vaccines (Table 3), as they are both easy to design, safe, and well tolerated 
in humans. Both are capable of eliciting humoral and cellular immune responses. There-
fore, several RNA vaccines are under research for cancer treatment with promising results 
[206]. 

Table 3. Main advantages and disadvantages of non-viral vectors for cancer treatment. 

 DNA RNA 

Advantages 

Non-infective platforms Non-infective platforms 
Easy to design and edit Easy to design and edit 

Economic synthesis Economic synthesis 

Induce specific immune responses Induce specific immune re-
sponses 

High stability Non-genetic integration 

Disadvantages 

Poor immunogenic Poor immunogenic  
Low transfection efficiency Low transfection efficiency  

Unknown side effects 
Unwanted inflammatory re-

sponses 
May require a special administration 

device 
Requires low temperatures for 

storage  
Potential integration into the human 

genome Low stability 
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One of the principal disadvantages of RNA vaccines is their low stability, with the 
need to encapsulate the RNA molecules and low temperatures for storage and transport. 
Furthermore, after the use of mRNA COVID-19 vaccines in millions of people worldwide, 
some safety concerns have emerged and need to be addressed to improve this technology 
[207,208]. 

Notably, several DNA vaccines are being tested in humans for SARS-CoV-2 vaccina-
tion inducing durable humoral responses and the significant activation of CD8+ T cells 
with lytic potential, opening new opportunities for using DNA vaccines for viral preven-
tion [209,210]. 

11. Future Perspectives 
Over the past years, new and exciting knowledge about cancer cell biology and the 

immune system’s functions has emerged. This knowledge, in combination with new de-
vices applicable for nucleic acid delivery and molecular biology tools for DNA manipula-
tion, permits the design of novel strategies to fight cancer. 

The development of more needle-free injection devices is a research area with great 
opportunity to improve the delivery of small amounts of drugs into the skin layers, such 
as in DNA vaccination [211,212]. 

One of the most attractive strategies in cancer treatment with promising results in-
volves plasmid DNA for ex vivo modification of T cells, using transposons, designer nu-
cleases, or CRISPR/Cas9 elements to target cancer cell recognition and elimination when 
returned to the patients [213,214]. However, ex vivo cell therapies are more expensive and 
require elaborate strategies. 

Due to the variability in the intratumoral microenvironment and the diverse genetic 
profile of cancer cells between different patients (even with the same type of cancer), per-
sonalized treatments have emerged as a research area with increasing attention to gener-
ate an effective therapy capable of dealing with the disease in a more targeted way [215]. 

In clinical trials, the most effective interventions involve combined therapies, such as 
prime-boost strategies (where DNA vaccination is administered followed by the subse-
quent administration of other viral or non-viral vectors) or DNA vaccines combined with 
ICB therapy or other drugs. As mentioned before, these interventions are necessary to 
overcome the complexity of cancer. 

Recently, other elegant strategies have been shown to induce a potent anti-tumor re-
sponse in clinical trials. This finding is the case of the VB10.16 vaccine (Vaccibody). This 
vaccine consists of a plasmid that encodes a therapeutic protein composed of three ele-
ments; an E6/E7 antigen, a dimerization entity, and a MIP-1 α targeting unit that specifi-
cally binds to APCs. This vaccine has been demonstrated to induce potent immune re-
sponses in patients with HPV16+ cervical intraepithelial neoplasia (CIN) 2/3, eliciting 
CD8+ T cells and driving robust immune responses contributing to regression in lesion 
size (in 14 from 16 patients treated) and in lesion grade (CIN1/0) in eight patients [216]. 
The combination with ICB therapy is under investigation in a Phase IIa clinical trial to 
improve its antitumor effect [205]. 

Novel strategies, such as those discussed in this review, are under way to improve 
the use of DNA for in vivo gene therapy and vaccination. We expect that in the near fu-
ture, they will receive approval for the prevention and treatment of cancer in humans. 
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