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INTRODUCTION

Eukaryotic circular RNAs (circRNAs) emerged in a common ancestor of the land-plant
Arabidopsis thaliana, the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe, and
the protists Plasmodium falciparum and Dictyostelium discoideum, more than a billion years ago
(Wang et al., 2014). Due to their resistance to exonucleases, these molecules are very stable, and
modern-day circRNAs are capable of interacting with proteins and other RNAs (Lasda and Parker,
2014), thus regulating multiple cellular mechanisms (Qu et al., 2015) ranging from cell-cell
communication (Yu and Kuo, 2019) to gene expression regulation (Garcia-Lerena et al., 2022) and,
together with miRNAs and mRNAs, participating in complex regulatory networks (Cao et al.,
2020).

Molecular dating and species number analyses suggest that after their marine origin, some
Amoebozoans colonized the land ecosystems, and others diversified with land plant radiation (Fiz-
Palacios et al., 2013; Fiz-Palacios et al., 2014). Plants and amoebozoans co-evolved and interacted
within these new ecosystems generating modern-day enteric Entamoeba species such as
Entamoeba histolytica, which causes dysentery in humans, and E. invadens, which invades
multiple tissues of reptiles (Loftus et al., 2005; Lorenzi et al., 2010; Ehrenkaufer et al., 2013;
Tanaka et al., 2019). Furthermore, the parasitic E. histolytica speciation processes culminated in a
very characteristic Sulfur metabolism (Jeelani and Nozaki, 2014; Mi-Ichi and Yoshida, 2019)
including sulfate activation localized in mitochondria-related organelles (mitosomes), and
sulfolipid metabolism pathways. The latter is crucial for the encystation of the reptilian
parasite E. invadens (Jauregui-Wade et al., 2019; Jauregui-Wade et al., 2020), which is the
model of choice to study amoebic differentiation so far.

Recently, 12 intronic (flicRNAs), and 748 exonic and exonic-intronic (circRNAs) circular RNAs
have been identified in E. histolytica and E. invadens. In the human parasite, flicRNAs and
circRNAs are differentially expressed between virulent (HM1-IMSS) and avirulent (Rahman)
amoebic strains (Mendoza-Figueroa et al., 2018; López-Luis, 2022). In contrast, the reported E.
invadens circRNAs correspond to 20 h encysting-induced cultures (López-Luis, 2022). As
expected, in addition to strain- and encystment-specific circular RNAs, numerous circRNAs
derived from genes of multiple functions were reported. We reasoned that the comparison of
circular RNAs indicative of species-specific Sulfur metabolism with those indicative of previously
acquired differentiation mechanisms, and with those indicative of more recently acquired parasitic
behavior (virulence) could suggest their episodic origin (or repurposing) and their functional
relationships.
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circRNAs ARE SHARED IN DIFFERENT
METABOLIC AND DIFFERENTIATION
PATHWAYS
To evidence their probable origins, previously reported
flicRNAs (Mendoza-Figueroa et al., 2018) and circRNAs were
classified as follows. The 748 E. histolytica and E. invadens
circRNAs previously identified (López-Luis, 2022) were
compared to the 1997 genes with introns and annotated as
Iron-Sulfur (Fe-S, marked with S) metabolism in the
AmoebaDB. From this set, only 162 genes with two or more
exons were considered because introns are required for
circRNAs biogenesis through back-splicing (Liu and Chen,
2022). The common genes of this set with those whose
circRNAs were detected in the virulent (HM1-IMSS; 174)
and the avirulent (Rahman; 191) amoebic strains. Also, the
aforementioned 162 genes were compared to the 33 genes whose
circRNAs remained after curation of the set of genes
corresponding to 20 h encystment-specific E. invadens (114
gene products). The curation process included the removal of
the cognate RNAs shared with trophozoites (39 gene products
remained) and the identification of their E. histolytica orthologs
was carried out (thus, 33 gene products). Obviously, E.
invadens-specific loci were not included.

A Venn diagram was used to relate the circRNA-producing
genes that had at least one corresponding gene identified in the
encystment circRNA library (Ei), in the species-specific Sulfur
metabolism (S), or expressed in virulent (V) or avirulent (A) E.
histolytica strains (Figure 1). Some of these genes also produce
flicRNAs (*).

Ten circRNA-producing genes were localized in the
intersections of the three categories (two for S-A intersection;
two for S-V intersection; and one each for S-E, V-E, S-A-V, S-A-
E, S-V-E, and A-V-E intersections). These genes code for cell-
signaling (G protein b-subunit, EHI_000240S, V), intracellular
vesicle trafficking (Rab GTPases RabX24 EHI_038680S, V;
RabX31 EHI_040310S, V, A; Golgi to ER transport RUD3
EHI_014,170 S, A, *), metabolic enzymes (pyruvate:ferredoxin
oxidoreductase, PFOR, EHI_051060V, A, Ei; acyl-CoA oxidase-
like, ACOX, EHI_152970S, A, Ei; deoxycytidine triphosphate
deaminase, DC3PDA, EHI_140240S, Ei), a cell surface protease
(gp63, EHI_042870S, A, *), internal membranes organization and
calcium storage (obscurin-like, EHI_030890V, Ei), and cell
motility (myosin EHI_080740S, V, Ei, *) proteins. The analysis
of their relationships is based on their protein functions.

The circRNAs analyzed are shared between encystment and
Sulfur metabolism (S-Ei). Possibly they regulate events associated
to transport into mitochondria-related organelles, sulfate

FIGURE 1 | Entamoeba histolytica ncRNAs are shared in different biological processes. The 748 circRNAs and flicRNAs (*) dataset was scanned for ncRNAs from
genes involved in Sulfur metabolism (162), expressed in the virulent HM1-IMSS strain (174), expressed in the avirulent Rahman strain (191), and expressed in 20 h
encystment-induced E. invadens trophozoites. Encystment-specific E. histolytica circRNAs (114) were identified by subtracting circRNAs expressed in trophozoites and
E. histolytica orthologs identification. G protein b-subunit, (EHI_000240), RabX24 (EHI_038680), RabX31 (EHI_040310), RUD3 (EHI_014170), pyruvate:ferredoxin
oxidoreductase (PFOR, EHI_051060), acyl-CoA oxidase-like (ACOX, EHI_152970), deoxycytidine triphosphate deaminase (DC3PDA, EHI_140240), cell surface
protease gp63 (EHI_042870), obscurin-like hypothetical protein (EHI_030890), andmyosin (EHI_080740) were related. The genes in each intersection and the remaining
figures in each category are shown.
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activation of metabolites, and metabolism of fatty acids, essential
for the cyst formation (Mi-ichi et al., 2009; Mi-ichi et al., 2011;
Mi-ichi et al., 2015;Mi-Ichi and Yoshida, 2019). In contrast, fewer
S-Ei circRNAs are shared to maintain virulent or avirulent traits,
6 and 5, respectively, suggesting a more recent functional
regulatory role.

We are aware that our nested search within the available
circRNAs identified a small set of molecules to relate. For this
reason, our proposal should be taken cautiously. However, most
of the circRNAs analyzed here are central to the metabolic/
differentiation pathways discussed.

DISCUSSION

It is widely accepted that the first molecules in the origin of life
were RNAs whose replication was DNA independent (Frias-
Lasserre, 2012). This is additionally supported by the fact that
circRNAs are found in the three domains of the tree of life
(Villarreal, 2006). These molecules coevolved with their adaptor
molecules and were either inherited or laterally transferred to
accomplish existing biodiversity.

Assuming that during the evolution of Amoebozoa to E.
histolytica speciation, encystment arose prior to S metabolism,
and later virulent/avirulent traits emerged enabling the
colonization of primate and reptilian hosts, we envisage two
possible mechanisms of origin. On the one hand, circRNAs
appeared to be shared to regulate different functions in two or
more distinct biological processes. For example, S metabolism
and non-virulence, or encystment, S metabolism, and virulence.
On the other hand, it appears that the most recent functional
acquisition of circRNAs involved the modification or repurposing
of molecules that already regulated pathways involved in distinct
biological roles.

Together, S metabolism and encystment circRNAs are species-
specific molecules, possibly with regulatory functions. Since the
metabolites that result from sulfate activation can be used during
the encystment (Mi-ichi et al., 2009; Mi-ichi et al., 2011; Mi-ichi
et al., 2015; Mi-Ichi and Yoshida, 2019), it is expected that the
regulation of these two processes could be tightly linked,
requiring more gene expression controls exerted in more
biochemical pathways. Interestingly, some of these circRNAs
are also used in more recently acquired mechanisms employed
in host colonization, suggesting that to achieve host invasion,
gene re- or multi-purposing might have been the preferred
evolutionary routes. A simpler scenario to explain this would
be that the sole activity of the proteins and gene expression
regulators involved in S-Ei could suffice to successfully colonize a
host, however, the fact that fewer circRNAs are shared
differentially in V and A can be interpreted as a refinement of
pre-existing mechanisms to regulate virulent and avirulent traits
of the parasites. Definitely, there are much more genes and
functions involved in the regulation of these traits than solely
attributing the whole cause to 10 ncRNAs. For instance, all of

these genes are present in the nonvirulent human commensal E.
dispar however, in the also nonvirulent E. moshkovskii the
EHI_030,890 locus has no ortholog. The circRNA produced
from this locus is overexpressed in encystment and in the
virulent amoeba strain. Provided that this hypothetical protein
performs obscurin functions, it can be predicted that E.
moshkovskii amoebas could have less efficient Ca++ storage
capabilities, impaired internal membrane organization, and
probably reduced capping activity as well. It will be exciting to
determine the participation of this locus in amoebic virulence.

A comprehensive circRNA-silencing analysis is required to
study all genes and functions regulated by the E. histolytica
circRNA repertoire and to extend the search for the regulatory
roles of circRNAs on amoeba transcription factors, splicing
factors, and lysine and arginine methyltransferases that are
involved in both nuclear and cytoplasmic functions (Medina-
Gomez et al., 2021).

What molecular mechanisms might be in place to adjust
particular circRNAs in the regulation of different biological
processes? At the molecular level, we predict that a circRNA-
miRNA-mRNA regulatory circuitry might be shared between
processes, in some cases with opposite effects. For instance, the
activity RabX31 circRNA involved in sulfur-metabolism could
impact differentially the virulent and avirulent phenotypes. Also,
the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2

of PFOR is regulated by its circRNA during encystment and may
have differential roles in virulence regulation. We have found
evidence that virulent-specific and avirulent-specific circRNAs
have complementary sites for Ehi-miRNAs and that might
function as miRNA sponges (López-Luis, 2022). A possible
scenario could be that an avirulent circRNA could sponge a
virulent Ehi-miRNA thus blocking the inhibitory function of such
Ehi-miRNA on its avirulent mRNA target; and vice versa.

In conclusion, apparently during the evolution of Entamoeba
existing circRNAsmight have been repurposed to regulate diverse
cellular functions.
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